MIDTERM: VECTOR BUNDLES AND CHARACTERISTIC CLASSES

Date: 15th September 2024

The Total points is **110** and the maximum you can score is **100** points.

- (1) (5+5+5+5+5=25 points) Let $M \subset \mathbb{R}^A$ be a smooth manifold of dimension n.
 - (a) Define the tangent space DM_x for a point $x \in M$ and the tangent manifold DM.
 - (b) Define a smooth vector bundle on M.
 - (c) Define tangent bundle on M.
 - (d) When is M called parallelizable.
 - (e) Show that the unit circle S^1 is parallelizable.
- (2) (10 points) Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be a smooth function. Using the definition, show that the graph of f, Γ with subspace topology, is a smooth manifold.
- (3) (5+15=20 points) Let η be a vector bundle over a topological space B. Define Euclidean metric on η . Show that η and the dual vector bundle $\text{Hom}(\eta, \epsilon^1)$ are isomorphic.
- (4) (4+8+8=20 points) Define vector field of a smooth manifold. Show that if n is odd then the unit sphere S^n admits a vector field which is nowhere zero. Show that the tangent bundle of \mathbb{P}^n has a trivial subbundle of rank 1.
- (5) (5+15=20 points) Define total Stiefel-Whitney class of a vector bundle. Show that if n is even then tangent bundle of \mathbb{P}^n does not have a subbundle of rank 1.
- (6) (15 points) Let $G_n(\mathbb{R}^{n+k})$ be the set of *n* dimensional subspaces of \mathbb{R}^{n+k} . Show that $G_n(\mathbb{R}^{n+k})$ is a topological manifold of dimension nk.